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Abstract

This paper quantifies the computational complexity and parallel scalability of
two algorithms for Four Dimensional Data Assimilation (4DDA) at NASA’s Data
Assimilation Office (DAO). The first, the Goddard Earth Observing System Data
Assimilation System (GEOS DAS), uses an atmospheric general circulation model
(GCM) and an observation-space based analysis system, the Physical-space Statis-
tical Analysis System (PSAS). GEOS DAS is very similar to global meteorological
weather forecasting data assimilation systems, but is used at NASA for climate re-
search. Systems of this size typically run at between 1 and 20 gigaflop/s. The second,
the Kalman filter, uses a more consistent algorithm to determine the forecast error
covariance matrix than does GEOS DAS. For atmospheric assimilation, the gridded
dynamical fields typically have more than 106 variables, therefore the full error covari-
ance matrix may be in excess of a teraword. For the Kalman filter this problem will
require petaflop/s computing to achieve effective throughput for scientific research.



1 Four Dimensional Data Assimilation

Four Dimensional Data Assimilation (4DDA) is the process of combining observa-
tions with a dynamical model to generate a gridded best estimate, or analysis, of the
state of the system (Daley 1991). It is thus a mapping problem, whereby scattered
observations are converted into accurate maps of wind, temperature, moisture and
other variables. This is shown schematically in Figure 1. The model propagates
in time the estimate of the state, e.g., for the global atmosphere we use a general
circulation model (GCM). The analysis is a statistics-based algorithm for combin-
ing the model output, or forecast, with observations to produce the best estimate
state. This is a cycled algorithm whereby the analysis state is used to reinitialize the
model, and so on. 4DDA is used in weather forecasting to initialize model forecasts,
for example, at the National Centers for Environmental Prediction (NCEP) (Par-
rish and Derber 1992, Parrish et al. 1997), and at the European Center for Medium-
Range Weather Forecasts (ECMWF) (Courtier et al. 1998, Rabier et al. 1998, Ander-
sson et al. 1998). 4DDA is also used to perform reanalyses of past datasets to obtain
consistent, gridded, best estimates of the state variables of the atmosphere (e.g., wind,
temperature, moisture ...), for example, at NASA’s Data Assimilation Office (DAO)
(Schubert et al. 1993, 1995), at NCEP (Kalnay et al. 1996, Kanamitsu et al. 1999,
Kistler et al. 2000), and at ECMWF (Gibson et al 1997). These gridded reanalysis
datasets are a valuable resource for the Earth Science research community (DAO
2000).

This paper quantifies the computational complexity and the scalability of distributed-
memory parallel implementations of two algorithms for Four Dimensional Data Assim-
ilation (4DDA) at NASA’s Data Assimilation Office (DAO). The first is the Goddard
Earth Observing System Data Assimilation System (GEOS DAS) which uses a grid-
point based atmospheric general circulation model (GCM) and an observation-space
based analysis system, the Physical-space Statistical Analysis System (PSAS). GEOS
DAS is very similar to global weather forecasting algorithms, where the analysis fields
are used to initialize the GCM for a model forecast. Global 4DDA systems such as
GEOS DAS with model grids of the order 100 km have about 106 variables1. Whether
they are used for real-time weather forecasting or to create archive analysis files for
research they typically run between 1 and 20 gigaflops/s on parallel computers. The
second algorithm is the Kalman filter, which offers the promise of more accurate
analyses because it evolves error statistics in a dynamically consistent manner. How-
ever, the full error covariance matrix is of dimension the square of the number of
model state variables, so the algorithm will require petaflop/s computing to achieve
effective throughput for scientific research. A two-dimensional (latitude-longitude)
Kalman filter for the assimilation of constituent gas mixing ratio in the stratosphere
was developed by our group as a prototype and research tool (Lyster et al. 1997,
Ménard et al. 2000a,b). Some of the results of this work are used to extrapolate to
the complexity of a full Kalman filter with three-dimensional meteorological fields.

The results presented here are of interest to scientific software developers who make
compromises between algorithmic improvements or approximations on the one hand
and computer resources on the other. They also are a useful starting point for
computer administrators who make strategic decisions about computer architecture,
maintenance, and purchases based on many parameters including future estimates of
the problem size (e.g., the resolution of the model and the number of observations
to be assimilated) and the performance and parallel scalability of the algorithms.
Section 2 starts with an overview of the GEOS DAS. The discussion on complexity

1More recent versions of GEOS DAS have horizontal resolution of 50 and 25 km
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provides estimates of floating-point operations of the components of the data assim-
ilation systems. Specific results are provided for the version 2, GEOS-2 DAS, which
was the main production system in use at the DAO in the late 1990s. It consists of
GEOS-2 GCM with resolution 2o longitude, 2.5o latitude, and 70 vertical levels, and
GEOS-2 PSAS which assimilated about 50, 000 observations per six hours; details
of these algorithms are given in Section 2.1. Section 2.2 provides timing profiles of
the baseline production system GEOS-2 DAS that used shared-memory parallelism.
More recent versions use a combination of shared- and distributed-memory paral-
lelism. Section 3 presents the algorithm for the Kalman filter and describes the two-
dimensional distributed-memory parallel implementation that was used for scientific
and computational research. The GCM and PSAS have tightly-coupled core algo-
rithms with computational and communication-intensive parallel implementations:
these are hydrodynamic transport (GCM) and non-sparse large matrix-vector multi-
plications (PSAS). Section 4 discusses technical issues and limitations in developing
scalable distributed-memory parallel implementations of the GCM and PSAS, and
then extends the discussion to GEOS DAS.

2 Goddard Earth Observing System Data Assimilation System
(GEOS DAS)

Derivations of analysis algorithms abound (Daley 1991). We motivate briefly and
derive the analysis equations for GEOS DAS based on a statistical least squares ap-
proach. Cohn (1997) places this discussion in the context of general filtering methods.
The optimal estimate of the state is the value of the control variable w that minimizes
the cost function J :

J(w) =
1
2
[(wf − w)

T
(P f )

−1
(wf − w) + (wo −Hw)T R−1(wo −Hw)] (1)

where

• w is the control vector of state variables (∈ IRn, i.e., there are n state variables).

• wf is the state forecast (∈ IRn).

• wo is a vector of observations (∈ IRp, i.e., there are p observations).

• P f is the (n× n) known forecast error covariance matrix.

• R is the (p× p) known observation error covariance matrix.

• H is the (here linearized) forward operator that models the observations by act-
ing on the state vector (e.g., if the observations come from direct measurements
of the state then H can be implemented by interpolation from the state grid to
the observation locations).

The value of w that minimizes J is the analysis state:

wa = wf + K(wo −Hwf ) , (2)

where the Kalman gain is

K = P fHT (HP fHT + R)
−1

. (3)
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GEOS-2 DAS uses a six-hour window [0, 6hr] for the cycle that is shown schematically
in Figure 1. Starting from a prior analysis, the GCM generates a forecast by iterating
a timestepping algorithm:

wf
k+1 = Mkw

f
k , (4)

where k is a time index and Mk is the model operator. By convention (e.g., Daley
1991, DAO 2000), the forecast for each data assimilation cycle ends at (0, 6, 12, 18)
hours GMT. GEOS-2 DAS evaluates Eqn. (2) for each of these six-hourly forecasts
using data that are accumulated +/- 3 hours (i.e., evenly) about the forecast time.
Operational algorithms at weather centers and laboratories (Daley 1991) have more
constraints and attributes than the simple form of Eqns. (1), (2), and (3). Indeed
GEOS-2 DAS uses a slight modifiction of the cycling method just described, which in-
volves nine hours of model iteration for six-hourly each data assimilation cycle (Bloom
et al. 1996). However, these caveats do not substantially modify the evaluation of
computational complexity and parallel scalability in the present work.

2.1 The Computational Algorithm for GEOS DAS

We describe the complexity and timing profile for a baseline version 2, GEOS-2 DAS,
which was the main production system in use at the DAO in the late 1990s. The
GEOS-2 GCM (Takacs et al. 1994) comprises a spatial fourth-order-accurate finite-
difference dynamical core to model hydrodynamical processes, plus physics compo-
nents for moist convection, turbulence, and shortwave and longwave radiation. The
state, or prognostic, variables are horizontal winds, potential temperature, specific
humidity, and surface pressure. A high-latitude spectral filter and a global Shapiro
filter and polar rotation algorithm provide smoothing and numerical stability. GEOS-
2 GCM used a model resolution of 2o longitude, 2.5o latitude, and 70 vertical levels.
This corresponds to three-dimensional fields with horizontal resolution 91 gridpoints
in latitude and 144 gridpoints in longitude. GEOS-2 GCM uses a multiple time scale
computational technique (Brackbill and Cohen 1985). The dynamical core has the
smallest timestep of 3 minutes at baseline resolution. The physics components gen-
erate time tendencies at longer intervals: moist convection 10 minutes, turbulence
30 minutes, shortwave radiation 1 hour, and longwave radiation 3 hours. These ten-
dencies are applied to the state variables incrementally at the shortest timescale (3
minutes). Fuller details are described in Takacs et al. (1994), and the next Sections
will discuss the complexity and timing profile of the GCM in the context of the whole
data assimilation system. The number of state variables at the baseline resolution is
approximately n ≈ 3 × 91 × 144 × 70 +91 × 144 ≈ 2.6 × 106, corresponding to the
3 upper-air (i.e., three-dimensional) field arrays and 1 surface (i.e., two-dimensional)
field array, although in practice up to 14 upper-air field arrays are carried by the
algorithm.

Currently, the GCM is run with 1o×1o×48 levels, and developmental versions achieve
even higher resolution. An extensive land-surface model with associated prognostic
variables has also been implemented in the GCM, but we will not include that in the
baseline numbers. The actual resolution is not critical to this paper, which discusses
scaling properties starting from the baseline resolution of the GEOS-2 DAS. Note also
that this is not the same model as the finite-volume fvGCM that is being developed
for the next generation data assimilation system at the DAO. Between these two
GCMs some general quantities, such as asymptotic scalability, may be similar but
specific values of quantities like the model timestep or wall-clock time of runs are
different.

The algorithm for solving Eqn. (2), i.e., the analysis in Figure 1, is the Physical-space
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Statistical Analysis System (PSAS) (Cohn et al. 1998). This solves:

(HP fHT + R)x = wo −Hwf , (5)

and
wa − wf = P fHT x. (6)

The time subscript k will be dropped where it is not important to the discussion. The
right hand side of Eqn. (5) is sometimes called the “observed minus forecast residual”
or the “innovation”, and HP fHT + R is called the “innovation matrix”. To generate
the analysis fields at the end of each six-hourly cycle, GEOS-2 DAS adds the “analysis
increment” wa−wf incrementally to the state variables in a similar way as the physics
tendencies are applied as described above (Takacs et al. 1994, Bloom et al. 1996).
The error covariance matrices P f and R are implemented using models for variances
and correlations whose parameters are obtained from prior statistics and simplifying
assumptions such as stationarity (Daley 1991, DAO 2000). Sophisticated multivariate
formulations of error covariances are used to improve the quality of the analysis
(Guo et al. 1998). Although this has significant impact on the software complexity
(Larson et al. 1998) it has only a secondary impact on the computational complexity
and will not be considered here. The resulting matrices HP fHT + R and P fHT

are in principle dense, however correlation models with compact support (Gaspari
and Cohn 1999) are used, which reduces the computational complexity by setting
the correlation to zero beyond a fixed length. As described above, Eqns. (5) and
(6) are solved for data that are aggregated over six-hourly intervals. This interval
will be shortened to make better use of asynoptic observations (e.g., retrievals from
satellites) and accommodate shorter temporal and spatial scales of high-resolution
GCMs, but the numbers in this paper refer to baseline GEOS-2 DAS with a six-hour
analysis interval. The PSAS consists of solving one p × p linear system (Eqn. 5) for
the intermediate vector x using a parallel nested-preconditioned conjugate gradient
solver (Cohn et al. 1998, Golub and van Loan 1989, PSAS 1998). Machine-precision
solutions for x are not required because the analysis increment wa − wf is a first
order error statistic. For the baseline GEOS-2 DAS during the late 1990s there
were typically p ≈ 5 × 104 observations world wide in each six hour period. From
experience, we found that Ni ≈ 10 iterations of the outer loop of the solver provides
a satisfactory solution; this reduces the residual of the solver by about an order of
magnitude.

The GEOS-2 DAS was run in a number of production modes (Stobie 1996). These may
be generally categorized as real-time, near real-time, and reanalysis modes. Real-time
requires model forecast and analyses to take place sufficiently in excess of one day of
assimilation per wall-clock day so that the results may be studied and disseminated
to customers such as satellite instrument teams with real-time needs. Reanalyses
are multi-year studies designed to provide long-term datasets from a frozen scientific
software configuration. For example, the DAO has completed a reanalysis for the years
1979 to 1995 using the version GEOS-1 DAS (Schubert et al. 1993, 1995). Appendix A
summarizes the baseline GEOS-2 DAS system performance and throughput. GEOS-
2 DAS used shared-memory multitasking parallelism and ran on Cray J90/C90 and
SGI Origin 2000 computers. More recent versions use a combination of shared- and
distributed-memory parallelism (Lyster 2000a).

The data acquisition and storage system for 4DDA involves a worldwide instrumenta-
tion, telecommunication, databasing, computational, and administrative effort (Atlas
1997). We remark here only on the attributes and numbers that are relevant to the
present work. In the last 60 years about 2 billion observations that are appropriate for
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input to atmospheric data assimilation systems have been accumulated. The volume
of these data does not present the greatest computational complexity, and operational
centers are more concerned with the accuracy of these data. Considerable energy is
devoted to finding and validating old observations, i.e., “data rehabilitation”. In the
coming years, diverse new data types will be made available for data assimilation, and
the volume and complexity of the data handling system will increase considerably.
For example, satellite sea-surface wind observations have been shown to be useful
in increasing forecast accuracy of weather analyses (Atlas et al. 1996). The DAO
will also assimilate increasing amount of non-meteorological data, such as trace gas
concentration in the atmosphere. During the late 1990s, when GEOS-2 DAS was the
main operational data assimilation algorithm at the DAO, about 105 observations
were produced daily under the World Weather Watch and transmitted to worldwide
weather centers and the DAO via the Global Telecommunications System, which is
under the supervision of the World Meteorological Organization (Atlas 1997). More
than 70% of these were obtained from satellites measurements, mostly as temperature
retrievals; the remaining were from in situ balloon-borne and land and sea surface
instruments. At baseline resolution for the GEOS-2 GCM (2o × 2.5o × 70 levels), a
day of assimilation produced in excess of 1 gigabyte of data. Hence data assimilation
at real time (one day of assimilation per wall-clock day) did not stretch the local disk
capacity or bandwidth of most modern computer systems. However, extended runs at
higher throughput than real time increases the burden on storage and data process-
ing. The most severe challenge is for reanalysis projects where multi-year datasets are
analyzed by a fixed-version DAS and the products are made available to the scientific
community. The standard benchmark is a rate of 30 days of assimilation per day of
wall-clock time (i.e., a fifteen year reanalysis on order half a year). At this rate the
GEOS-2 DAS produced about 10 terabytes of data per year.

2.2 The Computational Complexity of GEOS DAS

Where appropriate, estimates of actual floating point counts are calculated. However,
where this is too difficult or vague we simply specify the scaling. The computational
complexity of different algorithms cannot be compared without careful specification
of the spatio-temporal problem domains. In this paper we will state when we use two
or three spatial dimensions. We use the notation [0, T ] to specify a fixed simulation
time interval. Beyond these, the computational complexity depends on a combination
of numerical and physical parameters, including the number of state variables in the
model (n), the number of observations in an assimilation cycle (p), as well as numerical
parameters defined in the text.

For GEOS-2 GCM we specify separately the number of gridpoints in the longitude,
latitude, and vertical coordinates as Nx, Ny, and Nz respectively (i.e., n ∼ NxNyNz;
we indicate here only proportionality because n includes the total number of field
types–wind, height, surface pressure, moisture–factored into the total number of grid-
points). The complexity of all four of the dynamics, moist convection, turbulence,
and radiation components scale as NxNy. In any fixed interval [0, T ] the complexity
of the dynamics has an additional dependence on the number of timesteps. Gener-
ally the number of timesteps of the dynamics, i.e., the temporal resolution, increases
in proportion to the horizontal resolution, Nx. Also, as the update interval of the
physics components is shortened there will be an additional impact on complexity
(Takacs 1997). The complexity of the dynamics, moist convection, and turbulence
components scale as Nz, while the radiation scales as N2

z . As the horizontal res-
olution is increased and the concomitant number of dynamics timesteps in a fixed
simulation interval is increased the complexity of the dymamics dominates the other
components. Asymptotically, for a fixed simulation interval the complexity of the
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dynamics scales as n4/3. Thus, if the resolution of the GCM is doubled in all three
dimensions the complexity of the dynamics increases sixteen fold. The memory re-
quirement for the GCM scales as n; thus the memory requirement in general scales
less rapidly than the computational complexity. These asymptotic calculations help
specify the size of computing requirements in a ten year or longer timeframe, however
they can be misleading when applied to real developmental or production software in
use today where, for example, there may be parameter regimes where the timestep
does not need to be reduced in proportion to the horizontal resolution. In this case,
it is important to instrument and generate timing profiles of the algorithms (Takacs
1997). The next section will present the timing profile for the GEOS-2 DAS and its
components.

For the GEOS-2 PSAS, the solver, Eqn. (5), has complexity fNisp2, where s ≈ 0.40 is
the density (fraction of non-zero elements) of the innovation matrix resulting from the
use of a correlation function with compact support of 6000 km. The factor f equals
two plus the number of floating-point operations required to form each element of
the matrix. The GEOS-2 PSAS calculates the matrix elements using pre-calculated
lookup tables at each iteration of the outermost loop during the conjugate gradient
iteration cycle. This reduces the overall memory requirement and allows for scalability
to larger numbers of observations beyond the current values (Guo et al. 1998, Larson
et al. 1998). Therefore f may be as high as 10, but the exact value depends on the
optimization of the access to the tables (Lyster et al. 2000b). The complexity of the
preconditioners are neglected here. Eqn. (6) evaluates the analysis increment, and
this has complexity fsnp. The analysis increment is evaluated on a 2.5o × 2o × 14
level grid and these fields are interpolated to the model GCM grid. For the baseline
GEOS-2 DAS this means that the vertical coordinate systems are interpolated from
14 to 70 levels. Note that because the GCM and PSAS use different resolution grids
the values of n are context-dependent in the complexity formulae.

The baseline GEOS-2 DAS used a six-hour analysis cycle (Figure 1), with p ≈ 5×104

observations accumulated evenly about the analysis time, as described above. The
analysis cycle can be made shorter, potentially leading to a more accurate algorithm,
and this is an area of ongoing research. In Section 3 this is discussed in the context
of the Kalman filter. For now, note that as the analysis cycle time is reduced the
computational complexity of the analysis Eqn. (6) for the interval [0, 6hr] remains
fixed at fsnp. However, for this fixed interval the complexity of the solver, Eqn. (5),
will be reduced to approximately NtfNis(p/Nt)

2 = fNisp2/Nt, where Nt is the
number of analysis cycles in [0, 6hr]. Thus, if the analysis cycle time were reduced
to the three minute timestep of the model dynamics for baseline GEOS-2 GCM, the
complexity of the analysis solver would be reduced by a factor of Nt = 120. In the
following section we show that for the baseline GEOS-2 PSAS, the implementations
of Eqns. (5) and (6) contributes to the computational complexity of the PSAS in
the ratio 35:62. Therefore, reducing the analysis cycle time can reduce the overall
complexity significantly, but the increase in the number of available observations will
counteract this.

2.3 The Timing Profile of GEOS-2 DAS

The baseline GEOS-2 DAS uses shared-memory multitasking parallelism on Cray
J series and SGI Origin computers. Technical issues and limitations in developing
scalable distributed-memory parallel implementations of the GCM and PSAS, and
by extension GEOS DAS, is discussed in Section 4. In this section we discuss the
timing profile of shared-memory parallel GEOS-2 DAS.
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Table 1 shows the percentage of time taken by the top-level components of the base-
line GEOS-2 DAS run on 8 processors of an SGI Origin 20002. Note that the time
taken for the Diagnostics involves the CPU time to accumulate and process three-
dimensional arrays and the time to write data to disk. The Interface time accounts
for the input and inital processing of the (p ≈ 5× 104) observations, plus the Quality
Control component, which culls a priori unreliable observations (e.g., those observa-
tions whose locations or values are in gross error). The GCM, PSAS, Diagnostics, and
Interface software, which comprise about 150,000 lines of Fortran 77 and Fortran 90
code, make substantial use of shared-memory multitasking parallelism. Overall, 0.6%
of the serial time cost of GEOS-2 DAS (i.e., as timed on a single processor) arises
from code that is is not parallelized; of this, about half is in the initialization and data
processing components of the PSAS and half is in the Interface. As a check, we esti-
mate the percentage of wall-clock time for the Interface when GEOS DAS is run on 8
processors. Let u be the fraction of serial time cost of the Interface, i.e., u = 0.003 –
henceforth u is referred to as the “serial fraction”. Then the fraction of wall-clock time
of the Interface on Np = 8 processors is approximately u/(u + (1 − u)/Np) = 0.024.
The unparallelized component of the PSAS does not significantly modify the result,
however we will later have to take this into account when dealing with the scalability
of GEOS DAS for larger numbers of processors. In the present case, for 8 processors
the figure 0.024 (2.4%) is in line with the value shown in Table 1.

GEOS-2 DAS Component Percentage of Wall Clock time
8 Processors of an SGI Origin 2000

GCM 45. %
PSAS 39. %
Diagnostics 13.5 %
Interface 2.5 %

Table 1: The percentage of time taken by the components of shared-memory multi-
tasking parallel baseline GEOS-2 DAS. Runs were performed on 8 processors of an
SGI Origin 2000.

Table 2 shows the percentage of time taken by the top-level components of the baseline
GEOS-2 GCM. The GCM is run in “assimilation mode” using the Matsuno timestep-
ping scheme. The times for the dynamics, the Shapiro filter spatial smoother, the
polar rotation, and other grid transformations are bundled into a single component
designated Dynamical Core (Takacs et al. 1994).

The percentage of time taken by the top-level components of the baseline GEOS-2
PSAS is shown in Table 3. The solver (Eqn. 5) with complexity fNisp2 takes about
35% of the time while the analysis (Eqn. 6) with complexity fsnp takes 62% of the
time. These expressions for complexity can be checked approximately by taking the
nominal values, f = 10, p = 5 × 104, n = 106, Ni = 10, and s = 0.4. Using these
numbers, fNisp2 = 1011 and fsnp = 2 × 1011, i.e., the estimated count of floating-
point operations for the PSAS is 3 × 1011 per analysis. The Cray J916 Hardware
Performance Monitor reports 5 × 1011 floating point multiplications and 4.5 × 1011

2The numbers in this paper were obtained on an Origin 2000 with 64 processors and 16 gigabytes
of memory at NASA Ames Research Laboratory. Other numbers were obtained for a Cray J916
with 16 processors and 2 gigabytes of memory at NASA Goddard Space Flight Center.

8



floating point additions for the total complexity of GEOS-2 DAS (including the GCM,
PSAS, Diagnostics, and Interface) per analysis. Therefore, Table 1 indicates that
39/100× 9.5× 1011 ≈ 3.7× 1011 is more like the actual number of flops per analysis
for the baseline GEOS-2 PSAS.

GCM Component Percentage of Wall Clock time
10 Processors of Cray J90

Dynamical Core 43. %
Moist Convection 16. %
Turbulence 10. %
Radiation 32. %

Table 2: The percentage of time taken by the top-level components of GEOS-2 GCM
(vc6.5, Takacs 1997). Although these numbers are for 10 processors of the Cray J90,
they do not differ significantly from the baseline 8 processors on the SGI Origin 2000.

PSAS Component Percentage of Wall Clock time
8 Processors of an SGI Origin 2000

Solver (Eqn. 5) 35. %
Analysis (Eqn. 6) 62. %
Utilities 3. %

Table 3: The percentage of time taken by the top-level components of the baseline
GEOS-2 PSAS.

3 The Kalman Filter

The Kalman filter (Jazwinski 1970, Cohn 1977) assimilates observations sequentially
with the model at the corresponding time (tk) when they are taken. In this regard,
it is like the PSAS with a shortened analysis update cycle:

wa
k = wf

k + Kk(wo
k −Hkw

f
k) , (7)

where the Kalman gain is

Kk = P f
k HT

k (HkP
f
k HT

k + Rk)
−1

, (8)

where sk observations are assimilated at time tk. For the Kalman filter analysis the
cycle also involves both a model forecast

wf
k+1 = Mkwa

k, (9)

and a dynamically consistent forecast of the state error covariance matrix

P f
k+1 = MkP a

k MT
k + Qk, (10)
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where Mk is the tangent-linear model operator, and Qk is the model (or system) error
covariance matrix. The analysis error covariance matrix at the new time tk+1 is

P a
k+1 = (I −Kk+1Hk+1)P

f
k+1, (11)

where I is the identity matrix. The filter then proceeds sequentially in time through
repeated iterations of Eqns. (7)-(11).

A two-dimensional (latitude-longitude) Kalman filter for the assimilation of strato-
spheric chemical constituents was developed by Lyster et al. (1997), and is being
used for scientific study of stratospheric constituent gases (Ménard et al. 2000a,b).
The dynamical model uses advective transport with a gridpoint based flux-conserving
algorithm (Lin and Rood 1996). The transport is driven by prescribed winds from
GEOS DAS. At 2o × 2.5o resolution the number of gridpoints is n = 91×144 = 13104
and the model timestep is 15 minutes. This was used for the assimilation of retrieved
methane from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument
aboard NASA’s Upper Atmosphere Research Satellite (UARS). For CLAES, there
were typically pk ≈ 15 observations, per layer, per timestep. The Kalman filter
achieved 150 days of assimilation per wall-clock day, or 4.1 sustained gigaflop/s, on
128 processors of the Cray T3E-600 at NASA Goddard Space Flight Center.

For the gridpoint based horizontal transport that is used for the two-dimensional
Kalman filter, the complexity of a single timestep of the model, Eqn. (9), is hn,
where h ≈ 10 − 100 takes into account the size of the finite-difference template.
The complexity of Eqn. (10) is (2h + 1)n2 per analysis cycle. The Kalman gain,
Eqn. (8), may be evaluated using a direct solver usingO(p3

k) operations. Alternatively,
Eqns. (5) and (6) may be employed; their computational complexity was discussed
in Section 2.2. However, the method described in Section 2.2 does not generate the
Kalman gain Kk explicitly. The complexity of Eqn. (11) is approximately (pk + 1)n2.
For the GEOS-2 DAS, observations are aggregated over a six-hourly interval. As
described above, the value of pk for the Kalman filter is smaller than for the GEOS-2
DAS by the number of model timesteps in 6 hours. At baseline resolution for the
GCM (2o × 2.5o ×70 layers) the timestep of the dynamics is 3 minutes, so pk is 120
times smaller than for the PSAS. Only small experiments (e.g., pk < 103) could afford
to evaluate Kk directly. A Kalman filter or an approximate Kalman filter for a large-
scale multivariate meteorological system would have to use an iterative solver, such
as the PSAS. The matrices P f,a

k are of size n2, and HkP
f
k HT

k + Rk is of size p2
k.

A Kalman filter based on a tangent-linear three-dimensional GCM would require con-
siderably more resources than the two-dimensional filter described above for strato-
spheric analyses. The memory to store the error covariance matrices, P f,a, would
be approximately n2 ≈ 6.8 × 1012 words at the baseline resolution of 2o × 2.5o ×
70 levels. The floating point operations in Eqn. (10) are generated by 2n applica-
tions of the tangent-linear operator. Assuming that the resolution and throughput is
fixed at that of GEOS-2 DAS, the required operations rate for Eqn. (10) would be
2n × 250 megaflop/s = 0.5 petaflop/s (the value 250 megaflop/s is taken from the
baseline GEOS-2 DAS in Appendix A). This is clearly beyond the reach of current
resources. GEOS DAS, with an analysis based on PSAS, is an approximate Kalman
filter. Efforts are under way worldwide and at the DAO to develop computation-
ally feasible improvements to 4DDA algorithms, such as reducing the analysis cycle
time for GEOS DAS, and developing more physically-based error covariance models
(Riishøjgaard 1998).
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4 The Scalable Distributed-Memory Parallel GEOS DAS

The baseline GEOS-2 DAS uses shared-memory multitasking parallelism on Cray J
series and SGI Origin computers. A distributed-memory parallel implementation of
the GCM was designed (Lyster et al. 1997) and prototyped (Sawyer and Wang 1999)
using the Message-Passing Interface (MPI) and shmem libraries. Distributed-memory
parallel PSAS was prototyped (Ding and Ferraro 1995), and an MPI PSAS kernel was
developed (Guo et al. 1998, Larson et al. 1998). During the year 2001 development and
validation of distributed-memory parallel GEOS DAS was completed. The GCM and
PSAS have tightly-coupled core algorithms with computational and communication
intensive parallel implementations; these are hydrodynamic transport (GCM) and
non-sparse large matrix-vector multiplications (PSAS). We discuss theoretical limits
to the development of scalable distributed-memory parallel implementations of the
GCM and PSAS. We then describe in terms of the well-known Amdahl’s law how the
serial component of the GEOS DAS application impacts scalability. As we developed
the distributed-memory parallel application based on GEOS-2 DAS this limit was
the most important in determining the maximum number of processors that can be
usefully employed to run the application.

Appendix B quantifies the limitations of scalable distributed-memory parallel imple-
mentations of the GCM and PSAS. We focus on the tightly-coupled core hydrody-
namic transport and non-sparse large matrix-vector multiply algorithms. The parallel
speedup (SU), Eqn. (16), is defined as the time to run the application on one proces-
sor divided by the time to run it on Np processors. An ideal parallelization would have
SU = Np. However, because of a combination of the interprocessor communication
overhead and the difficulties in balancing the workload among processors, SU falls
increasingly below the ideal linear scaling for increasing number of processors. We
define the maximum number of processors Npmax to be where SU is one half the ideal
value. For gridpoint-based transport algorithms Npmax is given by Eqn. (17). For
parameters typical of current global transport algorithms (1◦× 1◦resolution, using a
two-dimensional horizontal parallel domain decomposition, a single-processor speed of
100 megaflop/s, and an interprocessor communication bandwidth of 10 megabytes/s)
Eqn. (17) gives Npmax = 400. The parallel matrix-vector multiply at the core of the
PSAS distributes the work in matrix-vector blocks across processos and uses collective
MPI library routines MPI_reduce_scatter() and MPI_all_gather(). The maximum
speedup is given by Eqn. (20). For typical parameters of the PSAS (p ≈ 105, s = 0.4,
f = 10) Npmax is of the order of thousands of processors. Figure 3 shows that the
scalability is further limited by load imbalance in the distribution of matrix-vector
blocks to the processors.

We have shown that the highly coupled parallel subcomponents of distributed-memory
parallel gridpoint GCM and PSAS have upper limits to their scalability in the range
400 − 1000 processors on SGI Origin 2000 series and similar computers. We have
also shown, in Tables 1, 2 and 3, that the main subcomponents of the GEOS-2 DAS
(Dynamical Core, Moist Convection, Turbulence, Radiation, PSAS Solver, PSAS
Analysis, Diagnostics, and Interfaces) have an approximately flat timing profile. This
means that a large fraction of 150, 000 lines of code are candidates for single processor
optimization. In addition to these issues of single processor optimization and parallel
scalability of core algorithms, we have to account for unparallelizable and unparal-
lelized code. Similar to the discussion in Section 2.3, let u be the serial fraction of
GEOS-2 DAS. As above, the speedup (SU) is defined as the time taken to run the
application on one processor divided by the time to run it on Np processors. Then

SU = Np/(1− u + Npu) . (12)
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Assuming u � 1, the maximum number of processors – defined as where the speedup
is one half the ideal value – is 1/u, i.e., the limit is approximately the inverse of the
fraction of the serial time cost of the application; this is a statement of Amdahl’s law
(1967). For the baseline GEOS-2 DAS, u = 0.006 (Section 2.3) so the Amdahl’s limit
on the entire parallel GEOS-2 DAS application is 1./0.006 = 166 processors.

This analysis shows that, regardless of how efficiently the core compute- and communication-
intensive components of the GCM and PSAS are parallelized, the parallel application
based on GEOS-2 DAS will not scale beyond 166 processors. This is due to the small
but utlimately significant component of unparallelized and unparallelizable code. In-
creasing the resolution of the transport algorithm, and using more observations will
improve scalability because there is correspondingly more work to distribute among
processors. There are also ongoing efforts to parallelize more of GEOS DAS – es-
pecially the Interface in Table 1 – using optimized parallel libraries and enabling
overlapping communications and CPU if possible. Single processor optimization of
the serial code is also being used to increase the scalability of the GEOS DAS appli-
cation.

5 Summary

We have discussed the computational complexity of the GEOS-2 DAS, which was
the baseline production system in use at NASA’s Data Assimilation Office in the
late 1990s. The complexity of the General Circulation Model (GCM) generally scales
linearly with the number of gridded state variables, n, per iteration of the algorithm
(with the exception of the quadratic scaling of the radiation algorithms with respect to
the number of vertical levels). The need to reduce the timestep of the dynamics as the
spatial resolution is increased results in an asymptotic n4/3 scaling for the dynamical
core for the simulation of fixed time intervals. The Physical-space Statistical Analysis
System (PSAS) has asymptotic scaling sp2 and snp. The former arises from the
solver, Eqn. (5), and the latter from Eqn. (6) whose fundamental basis is the error
correlation between all observations and all gridpoints in an analysis cycle. The
computational complexity of the PSAS is reduced by using error correlation models
with compact support so that the fraction of non-zero matrix elements is s ≈ 0.4.
Other modifications such as reducing the analysis cycle time are under research. The
computational complexity and the required computer memory of the Kalman filter
is quadratic in n. We showed, using a simple estimate based on the performance of
GEOS-2 GCM, that a Kalman filter for atmospheric global data assimilation would
require petaflop/s computing to achieve effective throughput for scientific research.
We have developed a computationally tractable Kalman filter suitable for research on
stratospheric constituent gas assimilation where the dynamics are two dimensional.
We noted that the development of a full, petaflop/s scale, Kalman filter would be
an ambitious and scientific significant exercise, but the main thrust for practical or
operational implementations concentrate on approximate Kalman filters with reduced
computational complexity.

We developed parameterized formulae that estimate the limit to distributed-memory
parallel scalability of the tightly coupled transport and large matrix-vector multipli-
cations which are important components of the CPU time cost of the gridpoint GCM
and PSAS. For SGI Origin 2000 and similar computers the scalability is limited to
400− 1000 processors. In addition, the unparallelizable and unparallelized code pose
significant limits on the scalability of the end-to-end algorithms. For GEOS-2 DAS
the serial fraction (i.e., the fraction of CPU time cost as run on a single processor) is
only 0.006. This includes I/O and represents by far the bulk of the lines of code of
GEOS-2 DAS. Therefore, the Amdahl’s limit of scalability of the distrubuted-memory
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parallel implementation of this application is 1/0.006 = 166 processors. This result
holds regardless of how efficiently the GCM and PSAS are parallelized. Therefore,
efforts to improve the throughput of GEOS DAS necessarily involve efficient paral-
lelization of a very large number of the 150, 000 lines of code (aside from the core
transport and matrix-vector multiply subcomponents), and improving their serial
performance.
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Appendix A: GEOS-2 DAS System Performance and Through-
put

Baseline GEOS-2 DAS: 2o × 2.5o × 70 level GCM resolution; 200,000 obs/day
Net throughput is 5 assimilation days/wallclock day using multitasking
parallelism run on 8 processors of the Origin 2000
Main Memory (GB) 2.2 (per image)
Disk (GB) 8.0
Mass Storage (GB) 2300.0 (this is output per year)
Volume of Data (GB) 6.2 (produced per day per image)
Gigaflop/s sustained 0.25 (per image)
Duration of Run 5 days/wallclock day (continuous operation, single image)
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Appendix B.1: Asymptotic Scalability of Distributed-Memory
Parallel Gridpoint General Circulation Models

We calculate the limit on the number of processors that can be usefully employed to
reduce the wall-clock time of a distributed-memory parallel gridpoint based transport
algorithm. In the parallel decomposition, compact domains of gridpoints and their
associated floating-point operations are distributed across processors. The limit on
the number of processors is the result of the surface-to-volume effect (e.g., Foster 1994
Sec. 2.4), whereby the impact of communication of domain surface data becomes
comparable to the time to perform the floating-point operations of the algorithm.
This is an approximation of the scalability in the sense that it does not account for a
number of the typical complications that often occur in General Circulation Models
(GCM), viz:

• We are neglecting the algorithms for parameterized physics processes, which
include moist convection, turbulence, and radiation; the grid transformations;
the diagnostics; and the I/O.

• We are not assessing the impact of load imbalance.

• We cannot simply account for indeterminacy in communications, such as in
semi-Lagrangian methods.

The embarrassingly parallel parts of the GCM (e.g, some algorithms for parame-
terized physics processes) tend to improve the overall scaling with respect to the
present calculation, while load imbalance will tend to make the scaling worse. Other
components (e.g, the parallel rotation grid transformation) need a separate analysis
(Lyster 2000a and articles therein). The communication of domain surface data en-
ables algorithmic consistency across the boundary between processor domains. The
present calculation is very similar to the estimate of parallel scalability of particle-
in-cell methods by Lyster et al. (1995), except that case involved communication of
mobile particles, which represented plasma ions and electrons, across gridpoint do-
main boundaries. We assume that the communication time can be approximated
in terms of the number of bytes communicated per processor and the bandwidth of
the communication channel (i.e., latency effects make the scalability worse, so this
approximation is still good in terms of evaluating an upper bound on scalability).
With this, the following calculation provides a good approximation for the scalability
of the distributed-memory parallel dynamical core of the GEOS GCM.

Define the following:

Np = Total number of processors employed
Ng = Total number of gridpoints in the computational domain
d = Dimension of the physical problem
D = Dimension of the parallel decomposition
M = single processor speed in megaflop/sec
B = interprocessor communication bandwidth in megabytes/sec
F = Number of flops/gridpoint/timestep for the relevant transport algorithm
G = The number of “layers” of guard cells in each dimension of the parallel decom-
position (e.g., G = 2 for fourth order finite difference)
P = The precision of the calculation in bytes per word (i.e., P = 4 or 8)
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Typically D = 1, 2, or 3, and d = 2 or 3, while d ≥ D.

Because it is difficult to parallelize global hydrodynamic algorithms in the vertical di-
mension, most parallel implementations use a compact horizontal, or “checkerboard”,
parallel decompositions (i.e, D = 2). It is therefore sufficient to quantify scalability
in terms of the number of gridpoints in the latitude-longitude domain (i.e, horizontal
transport), for which d = 2. The number of gridpoints around the border of each

domain is then 2DN (d−1)/d
g /N (D−1)/D

p ≡ 2DN
1
2
g /N

1
2
p .

The communication time per timestep per processor is:

Tcomm = 2DGPB−1N (d−1)/d
g /N (D−1)/D

p . (13)

The CPU time per timestep per processor is:

Tcpu = (F/M)(Ng/Np). (14)

Hence the ratio of communication to CPU time is:

τ := Tcomm/Tcpu =
2DGP

F
M
B

N1/D
p

N1/d
g

. (15)

The parallel speedup (SU) is defined as the time for the application to run on 1
processor divided by the time to run on Np processors. With the present assumptions,
we have:

SU = Np/(1 + τ). (16)

Therefore we may nominally define the maximum speedup, Npmax, as the number of
processors for which τ in Eqn. (15) is equal to 1:

Npmax =
[

BFN1/d
g

2MDGP

]D

. (17)

Beyond that, the floating point operations in additional processors are effectively
wasted.

The terms in τ may be characterized as follows:

• 2DGP
F : Parameters of the computational algorithm.

• M
B : Parameters of the computer.

• N1/d
g : The problem resolution.

• N1/D
p : The surface-to-volume effect (i.e., τ gets larger in proportion to the

number of processors to some geometry-dependent exponent).
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For parameters typical of current global transport algorithms, Ng = 360 × 181 (i.e.,
1◦× 1◦resolution), d = D = 2, M = 100, B = 10, F = 50, G = 2, and P = 8, so
Eqn. (17) gives Npmax = 400.

Appendix B.2: Asymptotic Scalability of Distributed-Memory Parallel
Matrix-vector Multiply for the PSAS Solver

We calculate the limit on the number of processors that can be usefully employed
to reduce the wall-clock time of a distributed-memory dense matrix-vector multiply.
The dominant time cost of the PSAS, Eqs. (5) and (6), are large, dimension p ≈
105, matrix-vector multiplications. For the present analysis the results do not differ
significantly between the symmetric (Eqn. 5) or rectangular (Eqn. 6) cases since
the structure of each dimension of the matrix is determined by a compact spatial
decomposition of the multi-dimensional data (see Guo et al. 1998). We therefore
only show the scaling analysis for the symmetric case. Parallelism is achieved by
assigning subsets of the block matrix-vector multiplications to each processor. The
partial vector results are then summed using the MPI_reduce_scatter() library call
as shown schematically in Figure 2. The cycle of the parallel matrix-vector multiply
is then completed using the MPI_all_gather() library call (not shown in the figure).

Advanced libraries such as PLAPACK (van De Geijn, 1997) have custom interfaces
and decompositions to support dense matrix-vector operations. We chose not to use
this because the more general interface of the MPI library is both simple and compat-
ible with the pointer-specified multi-dimensional vectors (Larson et al. 1998). Using
a 6,000 kilometer cutoff length for correlation functions, the matrices are semi-dense
with density s ≈ 0.4. For the moment, we focus on the limitations on scalabil-
ity due to the trade-off between communications in the MPI_reduce_scatter and
MPI_all_gather(), and the time cost of the sub-block matrix-vector multiplications.
We ignore the costs of the floating point operations in the reduction. As in Appendix
B.1, we ignore the cost of latency in the interprocessor communications.

Assuming that the collective MPI communication calls described above are imple-
mented using an efficient method such as recursive halving (Foster 1994, Sec. 11.2)
the cost of communications is

Tcomm = 2(pP/B)(Np − 1)/Np ≈ 2pP/B, (18)

where we have used the same definitions as Appendix B.1, and p ≈ 105 is the size of
the vector. The CPU time per processor is:

Tcpu = fsp2/(NpM), (19)

where, as in Section 2.2, f equals two plus the number of floating point operations
to form each matrix element. The parallel speedup is given by Eqn. (16), and the
maximum speedup is defined in the same way as Appendix B.1:

Npmax =
fspB
2PM

. (20)

For typical values for these parameters as defined in Appendix B.1 and above, Npmax =
625fs. If the matrix is precalculated, f = 2, but it may of order 10 when elements
are calculated on the fly. Memory limitations prohibit storing entire matrices, so
current implementations enable a combination of pre-stored and on-the-fly calculation
of matrix elements. The matrix density is s ≈ 0.4, so its clear that the upper limit
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of scalability of semi-dense matrix-vector multiplications, and hence the PSAS, is
of the order of thousands of processors for current generation machines and current
input datasets. The value is larger than the upper limit for a GCM because transport
algorithms in the dynamical cores of GCMs are sparse matrix algorithms, which
have more stringent scalability limits due to the surface-to-volume effect described in
Appendix B.1.

The calculation thus far presents an upper limit on scalability. We discuss here a
number of factors that reduce the scalability of the PSAS below the theoretical limit.
First, on large numbers of processors the size of the vector segments are sufficiently
small that message latency and synchronization dominate the communication cost
of the collective MPI calls. Second, the PSAS has a nested preconditioner which in-
volves successively sparser matrix-vector multiplications (Cohn et al. 1998, Larson et
al. 1998). Through Eqn. (20) (i.e., Npmax ∼ s) these will negatively effect scalability.
Third, work load imbalance has a serious impact on parallel scalability. The base-
line MPI PSAS Kernel has an upper limit of 57, 600 matrix blocks, which should be
sufficient to provide a statistically uniform distribution when their work is allocated
across one or two thousand processors (Lyster et al. 2000b). However, these blocks
are of widely differing size because their dimensions depend on the non-repeatable
distribution of observations in geographical areas of the earth. Early versions of the
Kernel used a method for load balancing that based the costs of the block matrix-
vector multiplications on the dimensions of the blocks. This was later augmented,
with only incremental improvement in scalability, by dynamic scheduling and work
scheduling based on statistically tuned cost estimates. The lower curve of Figure 3
(from Lyster et al. 2000b) shows the scaling of the baseline MPI PSAS Kernel in-
cluding the load balancing algorithm for 52, 738 observations covering a standard 6
hour analysis cycle. The poorer scaling relative to the above calculation is from a
combination of load imbalance and sparse preconditioners; using s = 0.1 and f = 5 in
Eqn. (20) gives Npmax = 312 which is in line with Figure 3. The lower curve in Figure
3 corresponds to the case of approximately 57, 600s blocks. The improved scaling
shown in the upper curve of the figure corresponds to the improved load balance that
resulted from a refinement to 921, 600s blocks. The value of the improved scaling at
256 processors was not obtained due to restricted availability of the computer at the
time of the experiments. However, from the scaling up to 128 processors it is clear
that the MPI PSAS kernel did not reach the theoretical limit that had been expected
from the above calculation. Apart from our work on load balancing algorithms, we
have developed and continue to work on collective parallel algorithms using optimized
communication procedures.
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Figure 1: Schematic of cycled four dimensional data assimilation.
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Figure 2: Schematic of the parallel decomposition for dense matrix-vector multiply
for 4 processors.

24



0

20

40

60

80

100

120

0 50 100 150 200 250 300

S
c
a
li
n
g

Number of PEs

Effect of Load Balance

Perfect
Original

Refinement

Figure 3: Improvements in scalability of MPI PSAS kernel due to load balancing.
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